

Software Engineering
2013; 1(1): 1-6

Published online June 20, 2013 (http://www.sciencepublishinggroup.com/j/se)

doi: 10.11648/j.se.20130101.11

To allot secrecy-safe association rules mining schema
using FP tree

S. Suresh
1
, S. Uvaraj

2
, N. Kannaiya Raja

3

1Sri Venkateswara College of Engineering, Chennai
2Arulmigu Meenakshi Amman College of Engineering, Kanchipuram
3Defence Engineering College, Ethiopia

Email address:
ss12oct92@gmail.com(S. Suresh), ujrj@rediffmail.com(S. Uvaraj), kanniya13@hotmail.co.in(N. K. Raja)

To cite this article:
S. Suresh, S. Uvaraj, N. Kannaiya Raja. To Allot Secrecy-Safe Association Rules Mining Schema Using FP Tree. Software Engineering.

Vol. 1, No. 1, 2013, pp. 1-6. doi: 10.11648/j.se.20130101.11

Abstract: Association rules mining is a frequently used technique which finds interesting association and correlation

relationships among large set of data items which occur frequently together. Nowadays, data collection is ubiquitous in

social and business areas. Many companies and organizations want to do the collaborative association rules

mining to get the joint benefits. However, the sensitive information leakage is a problem we have to solve and

privacy- preserving techniques are strongly needed. In this paper, we focus on the privacy issue of the

association rules mining and propose a secure frequent-pattern tree (FP-tree) based scheme to pre- serve private

information while doing the collaborative association rules mining. We display that our schema is secure and

collusion-resistant for n parties, which means that even if n - 1 dishonest party collude with a dishonest data miner

in an attempt to learn the associations’ rules between honest respondents and their responses, they will be unable to

success.

Keywords: Association Rules, Privacy-Preserving, Cryptographic Protocol

1. Introduction

Association rules mining techniques are generally

applied to databases of transactions where each transaction

consists of a set of items. In such a framework the problem

is to discover all associations and correlations among data

items where the presence of one set of items in a

transaction implies (with a certain degree of confidence)

the presence of other items. Association rules are

statements of the form X1,X2, ...,Xn ⇒ Y , meaning that if

we find all of X1,X2, ...,Xn in the transactions, then we

have a good chance of finding Y . The probability of

finding Y for us to accept this rule is called the confidence

of the rule. We normally would search only for rules that

had confidence above a certain threshold. The problem is

usually decomposed into two sub-problems. One is to find

those itemsets whose occurrences exceed a predefined

threshold in the database; those itemsets are called frequent

or large itemsets. The second problem is to generate

association rules from those large itemsets with the

constraints of minimal confidence. Much data mining starts

with the assumption that we only care about sets of items

with high support, they appear together in many

transactions. We then find association rules only involving

a high-support set of items. That is to say that X1,X2, ...,Xn

⇒ Y must appear in at least a certain percent of the

transactions, called the support threshold. How to do the

global support threshold counting with respecting clients’

privacy is a major problem in privacy-preserving rules

mining. supportX⇒Y = |TX∪Y | / |DB| means that the

support is equal to the percentage of all transactions which

contain both X and Y in the whole dataset. And then we can

get that: confidentX⇒Y = supportX⇒Y / support. The

problem of mining association rules is to find all rules

whose support and confidence are higher than certain user

specified minimum support and confidence. Distributed

mining can be applied to many applications which have

their data sources located at different places. In this paper,

we assume that there are n parties possess their private

databases respectively. They want to get the common

benefit for doing association rules analysis in the joint

databases. For the privacy concerns, they need a private

preserving system to execute the joint association rules

mining. The concern is solely that values associated with

2 S.Suresh et al.: To Allot Secrecy-Safe Association Rules Mining Schema Using FP Tree

an individual entity not being revealed.

1.1. Related Work

The research of privacy-preserving techniques for data

mining began in Year 2000, R. Agrawal et al [12] proposed

a reconstruction procedure which is possible to accurately

estimate the distribution of original data values from the

random noise perturbed data. However, Evfimievski et

al[13] pointed out that the privacy breach will occur in R.

Agrrawal’s proposal and proposed a new randomization

techniques to mine association rules from transactions

consisting of categorical items where the data has been

randomized to preserve privacy of individual transactions.

The method presented in Kantarcioglu et al. [13] is the first

cryptography-based solutions for private distributed

association rules mining, it assumes three or more parties,

and they jointly do the distributed Apriori algorithm with

the data encrypted. In the recent research papers [15][7][8],

some privacy-preserving association rules schemes are

proposed. These papers are similar and developed a secure

multi-party protocol based on homomorphic encryption.

1.2. Motivation and Our Contributions

The related works we mentioned above have three

problems. The first one is low efficiency by using the

Apriori algorithm. As we know, the Apriori algorithm is not

so efficient because of its candidates generation scan. The

second one is the accuracy problem in [13] in which there

is a trade-off between the accuracy and security. The third

one is the security problem; the schemes proposed in the

related works are not collusion-resistant. We propose an

improved scheme to overcome these three problems.

• We apply frequent-pattern tree (FP-tree) structure

proposed in [2] to execute the association rules

mining and extend it to distributed association rules

mining framework. We use FP-tree to compress a

large database into a compact FP-tree structure to

avoid costly database scans.

• We present a privacy-preserving protocol which

can overcoming the accuracy problem causes

randomization-based techniques and improve the

efficiency compared to those cryptography-based

scheme [15][7][9].

• Our privacy-preserving protocol provides a perfect

security and collusion resistant property. Our

scheme uses the attribute-based encryption to

create the global FP-tree for each party and then

uses the homomorphism encryption to merger the

FP-tree to get the final result of the global

association rules.

2. Preliminaries

2.1. Problem Definition

We assume that there are n parties want to do

cooperation on the joint databases DB1 ∪ DB2 ∪ ... ∪ DBn

without revealing the private information of database. And

we assume the standard synchronous model of computation

in which n parties communicate by sending messages via

point-to-point channels. There are some distributed parties

who want to get the global result from their data

transactions over the internet. Every party Pi has their

private transaction T 1 i . They all have serious concern

about their privacy while they want to get the accurate

result to help their following decision. No Party should be

able to learn contents of a transaction of any other client.

And we want to use some cryptographic toolkits to

construct a secure multi-party computation protocol to

perform this task. Let I = {a1, a2, ..., am} be a set of items,

and a transaction database DB = _T1, T2, ..., Tn_, where

Ti(i ∈ [1...n]) is a transaction which contains a set of items

in I. The support (or occurrence frequency) of a pattern A,

where A is a set of items, is the number of transactions

containing A in DB. A pattern A is frequent if A’s support is

no less than a predefined minimum support threshold

MinSupp.

2.2. Cryptographic Primitives

Public Key Encryption with Homomorphic Property: In

modern terms, a public-key encryption scheme on a

message space M consists of three algorithms (K,E,D):

1. The key generation algorithm K(1k) outputs a random

pair of private/public keys (sk, pk), relatively to a security

parameter k.

2. The encryption algorithm Epk(m; r) outputs a cipher

text c corresponding to the plaintext m ∈ M, using random

value r.

3. The decryption algorithm Dsk(c) outputs the plaintext

m associated to the cipher text c. We will occasionally omit

the random coins and write Epk(m) in place of Epk(m; r).

Note that the decryption algorithm is deterministic.

In this paper we use Palliler encrytion as public key

encryption. Paillier homomorphic encryption proposed by

Pallier [11]. It is provably secure and one-way based on the

Decisional Composite Residuosity Assumption and the

Computational Composite Residuosity Assumption: If the

public key is the modulus m and the base g, then the

encryption of a message x is E(x) = gxrm mod m2.

Then it has the homomorphic property E(x1) · E(x2) =

(gx1rm1)(gx2rm2) =gx1+x2 (r1r2)m = E(x1 + x2 mod

m) · and + denote modular multiplication and addition,

respectively.

Attributes-based Encryption (ABE) The ABE scheme is

developed from Identity based encryption(IBE) which

introduced by Shamir [12], is a variant of encryption which

allows users to use any string as their public key (for

example, an email address). This means that the sender can

send messages knowing only the recipient’s identity (or

email address), thus eliminating the need for a separate

infrastructure to distribute public keys. In their scheme,

there is one authority giving out secret keys for all of the

 Software Engineering 2013; 1(1): 1-6 3

attributes. Each encryptor then specifies a list of attributes

such that any user with at least d of those attributes will be

able to decrypt. They show that the scheme they present is

secure.

2.3. Security Definition and Adversary Model

This paper considers both semi-honest and malicious

adversaries. For Semi-honest adversaries, every party are

assumed to act according to their prescribed actions in the

protocol. The security definition is straightforward,

particularly as in our case where only one party learns an

output. The definition ensures that the party does not get

more or different information than the output of the

function. This is formalized by considering an ideal

implementation where a trusted third party (TTP) gets the

inputs of the two parties and outputs the defined function.

We require that in the real implementation of the protocol

that is, one without a TTP the client C does not learn

different information than in the ideal implementation. We

say that π privately computes a function f if there exist

probabilistic, polynomial-time algorithms SA and SB such

that:

{(SA(a, fA(x)), fB(x))} ≡ {(V IEWπA(x),OUPUTπB(x)) (1)

{(fA(x), SB(b, fB(x)))} ≡ {(OUPUTπA(x), V IEWπB(x))} (2)

where ≡ denotes computational indistinguishability, which

means that there is no probabilistic polynomial algorithm

used by an adversary A can distinguish the probability

distribution over two random string. It means that no

matter how the adversary tries to derive the private

information from the computation, what he can get only his

inputs and the random values.

3. Secure Multi-party Protocol for

Association Rules Mining Based on

FP-tree

3.1. Problem in Apriori-Based Distributed Association

Rules Mining

Most distributed association rules mining algorithms are

adaptations of existing sequential (serial) algorithms.

Generally speaking two strategies for distributing data for

parallel computation can be identified:

1. Data distribution: The data is apportioned amongst the

processes, typically by”horizontally” segmenting the

dataset into sets of records. Each process then mines its

allocated segment (exchanging information on-route as

necessary).

2. Task distribution: Each process has access to the

entire dataset but is responsible for some subset of the set

of candidate itemsets.

The Apriori heuristic achieves good performance gained

by (possibly significantly) reducing the size of candidate

sets. However, in situations with a large number of

frequent patterns, long patterns, or quite low minimum

support thresholds, an Apriori-like algorithm may suffer

from the following two nontrivial costs:

– It is costly to handle a huge number of candidate sets.

For example, if there are 10 power 4 frequent 1-itemsets,

the Apriori algorithm will need to generate more than

10power 7 length-2 candidates and accumulate and test

their occurrence frequencies. Moreover, to discover a

frequent pattern of size 100, such as {a1... a100}, it must

generate 2100 −2 ≈ 1030 candidates in total. This is the

inherent cost of candidate generation, no matter what

implementation technique is applied.

– It is tedious to repeatedly scan the database and check

a large set of candidates by pattern matching, which is

especially true for mining long patterns.

3.2. The General Description of Our Proposal

Our protocol construction is based on secure multi-party

computation techniques. The history of the multi-party

computation problem is extensive since it was introduced

by Yao [14] and extended by Goldreich, Micali, and

Wigderson [7]. Secure multi-party computation (MPC)

protocols allow a set of n players to securely compute any

agreed function on their private inputs, where the following

properties must be satisfied: privacy, meaning that the

corrupted players do not learn any information about the

other players’ inputs. and correctness, meaning that the

protocol outputs the correct function value, even when the

malicious players treat. In Secure Multi-party Computation,

we always assume that semi-honest model exists.

1. Support count among the common k-item sets

privately using the homomorphic encryption scheme.

2. Using attribute-based encryption scheme, every party

executes FP-tree construction and prepares for the global

FP-tree construction.

3. Using the private matching scheme, every party

merges the conditional FP trees to get common frequent

itemsets.

4. Secure global support count computation in the

merged FP-trees.

5. Output the final result of association rules from the

merged global FP-trees.

Initialization: A multiparty ABE system with

homomorphic property is composed of K attribute

authorities and one central authority. Each attribute

authority is also assigned a value dk. The system uses the

following algorithms: Setup: A randomized algorithm

which must be run by some trusted party (e.g. central

authority). Takes k as input the security parameter. Outputs

a public key, secret key pair for each of the attribute

authorities, and also outputs a system public key and

master secret key which will be used by the central

authority.

(1) Attribute Key Generation: A randomized algorithm

run by an attribute authority. Takes as input the authority’s

secret key, the authority’s value dk, a user’s GID, and a set

4 S.Suresh et al.: To Allot Secrecy-Safe Association Rules Mining Schema Using FP Tree

of attributes in the authority’s domain AkC. (We will

assume that the user’s claim of these attributes has been

verified before this algorithm is run). Output secret key for

the user.

(2) Central Key Generation: A randomized algorithm

runs by the central authority. Takes as input the master

secret key and a user’s GID and outputs secret key for the

user.

(3) Encryption: A randomized algorithm runs by a sender.

Takes as input a set of attributes for each authority, a

message, and the system public key. Outputs the cipher text.

(4) Decryption: -A deterministic algorithm runs by a user.

Takes as input a cipher- text, which was encrypted under

attribute set AC and decryption keys for an attribute set Au.

Outputs a message m if |AkC ∩ Aku| > dk for all authorities

k.

3.3. Distributed Association Mining with FP-Tree

FP-growth is a divide-and-conquer methodology

proposed by [8] which decomposes the association rules

mining tasks into smaller ones. It only scans the database

twice and does not generate candidate itemsets. The

algorithm substantially reduces the search costs. At first,

we let the parties build a global FP-tree together and then

do the association rules mining on the global FP-tree. FP-

growth, for mining the complete set of frequent patterns by

pattern fragment growth. Efficiency of mining is achieved

with three techniques: (1) a large database is compressed

into a condensed, smaller data structure, FP-tree which

avoids costly, repeated database scans, (2) our FP-tree-

based mining adopts a pattern-fragment growth method to

avoid the costly generation of a large number of candidate

sets, and (3) a partitioning-based, divide-and-conquer

method is used to decompose the mining task into a set of

smaller tasks for mining confined patterns in conditional

databases, which dramatically reduces the search space.

1. Since only the frequent items will play a role in the

frequent-pattern mining, it is necessary to perform one scan

of transaction database DB to identify the set of frequent

items (with frequency count obtained as a by-product).

2. If the set of frequent items of each transaction can be

stored in some compact structure, it may be possible to

avoid repeatedly scanning the original transaction database.

3. If multiple transactions share a set of frequent items, it

may be possible to merge the shared sets with the number

of occurrences registered as count.

It is easy to check whether two sets are identical if the

frequent items in all of the transactions are listed according

to a fixed order. Given a transaction database DB and a

minimum support threshold MinSupp, the problem of

finding the complete set of frequent patterns is called the

frequent-pattern mining problem. With the above

observations, one may construct a frequent-pattern tree as

follows. First, a scan of DB derives a list of frequent items,

{(f: 4), (c : 4), (a : 3), (b : 3), (m : 3), (p : 3)_}(the number

after ”:” indicates the support), in which items are ordered

in frequency descending order. Second, the root of a tree is

created and labelled with”null”. The FP-tree is constructed

as follows by scanning the transaction database DB the

second time.

1. The scan of the first transaction leads to the

construction of the first branch of the tree: _(f : 1), (c : 1),

(a : 1), (m : 1), (p : 1)_. Notice that the frequent items in

the transaction are listed according to the order in the list of

frequent items.

2. For the second transaction, since its (ordered) frequent

item list _f, c, a, b,m_ shares a common prefix _f, c, a_

with the existing path _f, c, a,m, p_, the count of each node

along the prefix is incremented by 1, and one new node (b :

1) is created and linked as a child of (a : 2) and another

new node (m : 1) is created and linked as the child of (b : 1).

3. For the third transaction, since its frequent item list _f,

b_ shares only the node _f_ with the f-prefix subtree, f’s s

count is incremented by 1, and a new node (b : 1) is created

and linked as a child of (f : 3).

4. The scan of the fourth transaction leads to the

construction of the second branch of the tree, {(c : 1), (b :

1), (p : 1)}

5. For the last transaction, since its frequent item list _c,

a, m, p_ is identical to the first one, the path is shared with

the count of each node along the path incremented by 1.

A frequent-pattern tree (or FP-tree in short) is a tree

structure defined below:

1. It consists of one root labeled as ”null”, a set of item-

prefix sub-trees as the children of the root, and a frequent-

item-header table.

2. Each node in the item-prefix sub-tree consists of three

fields: item-name, count, and node-link, where item-name

registers which item this node represents, count registers

the number of transactions represented by the portion of

the path reaching this node, and node-link links to the next

node in the FP-tree carrying the same item-name, or null if

there is none.

3. Each entry in the frequent-item-header table consists

of two fields, (1) itemname and (2) head of node-link (a

pointer pointing to the first node in the FP-tree carrying the

item-name).

Based on this definition, we have the following FP-tree

construction algorithm. This property is directly from the

FP-tree construction process, and it facilitates the access of

all the frequent-pattern information related to ai by

traversing the FP-tree once following ai’s node-links. We

can generate the conditional pattern-bases and the

conditional FP-trees generated from the existing FP-tree.

Construction of a new FP-tree from a conditional pattern-

base obtained during the mining of an FP- ree, the items in

the frequent itemset should be ordered in the frequency

descending order of node occurrence of each item instead

of its support (which represents item occurrence). This is

because each node in an FP-tree may represent many

occurrences of an item but such a node represents a single

unit (i.e., the itemset whose elements always occur together)

in the construction of an item- associated FP-tree. We can

 Software Engineering 2013; 1(1): 1-6 5

develop a distributed frequent-pattern mining algorithm

with distributed FP-trees. When one party has received the

tree string from another party, he generates new string by

merging the received string and its own string.

4. The Details of Multi-party Mining

Scheme

In our ABE scheme, we assume that the universe of

attributes can be partitioned into K disjoint sets. Each will

be monitored by a different authority. As mentioned above,

we also have one trusted central authority who does not

monitor any attributes.

4.1. Verifiable Secret Sharing

Secret-sharing schemes are used to divide a secret

among a number of parties. The information given to a

party is called the share (of the secret) for that party. It

realizes some access structure that defines the sets of

parties who should be able to reconstruct the secret by

using their shares First, let’s consider a very simplified

scheme based on the Feldman Verifiable Secret Sharing

scheme. Recall that, given d points p(1), ..., p(d) on a d − 1

degree polynomial, we can use Lagrange interpolation to

compute p(i) for any i. However, given only d−1 points,

any other points are information theoretically hidden.

According to the Lagrange formula, p(i) can be computed

as a linear combination of d known points. Let ∆j (i) be the

coefficient of p(j) in the computation of p(i). Then p(i) =

_j∈S p(j)∆j (i) where S is a set of any d known points and

∆j(i) = pi*k∈S,jnot equal k(i − k)/(j − k). Note that any set

of d random numbers defines a valid polynomial, and given

these numbers we can find any other point on that

polynomial.

4.2. Specifying Transaction’s Attributes

If we take this approach, any user with any d attributes

which are specified will be able to decrypt. But we want

each encryptor to be able to give a specific subset of

attributes such that at least d are necessary for decryption.

In order to do this, we need an extra tool: bilinear maps, for

bilinear map e, g ∈ G1, and a, b ∈ Zq, e(ga, gb) = e(g, g)ab.

Now, suppose instead of giving each user gp(i) for each

attribute i, we choose a random value ti and give gp(i)/ti . If

the user knew gti for at least d of these attributes, he could

compute e(g, g)p(i) for each i and then interpolate to find

the secret e(g, g)p(0). Then if our encryption includes e(g,

g)p(0)m, the user would be able to find m. Thus, the

encryptor can specify which attributes are relevant by

providing gti for each attribute i in the desired transaction

set.

4.3. Multiple Encryptions

First, let’s consider a very simplified scheme based on

the Feldman Verifiable Secret Sharing scheme. Recall that,

given d points p(1), ..., p(d) on a d − 1 degree polynomial,

we can use Lagrange interpolation to compute p(i) for any i.

However, given only d−1 points, any other points are

information theoretically hidden. According to the

Lagrange formula, p(i) can be computed as a linear

combination of d known points. Let ∆j(i) be the coefficient

of p(j) in the computation of p(i). Then p(i) = _j∈S p(j)∆j(i)

where S is a set of any d known points and ∆j(i) = pi*k∈S,j

not =k(i − k)/(j − k). Note that any set of d random

numbers defines a valid polynomial, and given these

numbers we can find any other point on that polynomial.

Thus our first attempt Multi-Authority Scheme is as

follows:

4.4. Private FP-Tree Matching

Here, we apply the secure matching protocol proposed

by Freedman et al. [16] to merge the FP-tree between every

two parties. We propose a framework whereby all parties

participate to a secure aggregation mechanism without

having access to the protected data. In order to ensure end

to end confidentiality, the framework uses additive

homomorphic encryption algorithms. All the count of the

conditional FP-tree is merged in this step.

Preventing Collusion. Note that we can easily extend

this to prevent collusion: If we give all our users points

from the same polynomial, any group with at least d

transaction between them would be able to combine their

keys to find p(0). However, if we instead give each user u a

different polynomial pu (but still with the same zero point

pu(0) = p(0)), then one user’s points will give no

information on the polynomial held by the other (as long as

neither has more than d.1 points). To see this, note that,

given any d−1 points on polynomial p1 and any d−1 points

on polynomial p2, with the requirement that these

polynomials must intersect at 0, it is still the case that any

value for y = p1(0) = p2(0) will define a valid pair of

polynomials. Thus, y is information theoretically hidden.

Ideally, a public-key encryption scheme should be

semantically secure against adaptive chosen-cipher text

6 S.Suresh et al.: To Allot Secrecy-Safe Association Rules Mining Schema Using FP Tree

attack. Informally, this means that an adversary can learn

nothing about the plaintext corresponding to a given cipher

text c, even when the adversary is allowed to obtain the

plaintext corresponding to cipher texts of its choice. We

henceforth denote this security notion as IND-CCA

(indistinguishability against adaptive chosen-cipher text

attacks). That is to say that our scheme’s security, which is

under the semi-honest model, relies on the encryption’s

strength.

5. Conclusions

The main contribution of this paper is proposing a

general framework for privacy preserving association rules

mining. For that the randomization methodologies are not

good enough to attain the high accuracy and protect clients’

information from privacy breach and the malicious attack,

we show that how association rules mining can be done in

this framework and prove that is secure enough to keep the

clients’ privacy. We also show that our protocols works

with less communication complexity and communication

complexity compared to other related schemes. In the

future research, a common framework with more formal

and reliable for privacy preservation will enable next

generation data mining technology to make substantial

advances in alleviating privacy concerns.

References

[1] Goldreich, O., Micali, S., Wigderson, A.: How to play any

mental game. In: Proceedings of the 19th annual ACM
symposium on Theory of computing (1987)

[2] Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern Tree
Approach. Data Mining and Knowledge Discovery, 53–87
(2004)

[3] Kantarcioglu, M., Clifton, C.: Privacy-Preserving
Distributed Mining of association rules on horizontally
partitioned data. In: Proceedings of the ACM SIGMOD
Workshop on Research Issues on Data Mining and
Knowledge Discovery (2002)

[4] Lindell, Y., Pinkas, B.: Privacy preserving data mining. In:
Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–
54. Springer, Heidelberg (2000)

[5] Paillier, P.: Public-key cryptosystems based on composite
degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT
1999. LNCS, vol. 1592. Springer, Heidelberg (1999)

[6] Shamir, A.: Identity-based cryptosystems and signature
schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

[7] Vaidya, J.S., Clifton, C.: Privacy Preserving Association
Rule Mining in Vertically Partitioned Data. In: Proceedings
of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2002)

[8] Yao, A.C.: Protocols for Secure Computation. In: 23rd
FOCS (1982)

[9] Zhan, J.Z., Matwin, S., Chang, L.: Privacy-Preserving
Collaborative Association Rule Mining. In: Procceding of
DBSec 2005, pp. 153–165 (2005)

[10] Freedman, M., Nissim, K., Pinkas, B.: Efficient Private
Matching and Set Intersection. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19.
Springer, Heidelberg (2004)

[11] Agrawal, R., Imielinski, T., Swami, A.N.: Mining
association rules between sets of items in large databases. In:
Proceedings of the ACM SIGMOD International
Conference on Management of Data (1993)

[12] Agrawal, R., Srikant, R.: Privacy-Preserving Data Mining.
In: ACM SIGMOD Int’l Conf. on Management of Data,
Dallas (May 2000)

[13] Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.:
Privacy Preserving Mining of Association Rules. In: Proc.
of 8th ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining (KDD) (2002)

[14] Feldman, P.: A practical scheme for non-interactive
verifiable secret sharing. In: Proc. of FOCS, pp. 427–437
(1987)

[15] Fukazawa, T.,Wang, J., Takata, T., Miyazak, M.: An
Effective Distributed Privacy- Preserving Data Mining
Algorithm. In: Fifth International Conference on Intelligent
Data Engineering and Automated Learning, UK (2004)

[16] Goldreich, O.: Foundations of Cryptography, vol. 2, ch.7.
Cambridge Univ. Press, Cambridge (2004)

