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Abstract: Association rules mining is a frequently used technique which finds interesting association and correlation 

relationships among large set of data items which occur frequently together. Nowadays, data collection is ubiquitous in 

social and business areas. Many companies and organizations want to do the collaborative association rules 

mining to get the joint benefits. However, the sensitive information leakage is a problem we have to solve and 

privacy- preserving techniques are strongly needed. In this paper, we focus on the privacy issue of the 

association rules mining and propose a secure frequent-pattern tree (FP-tree) based scheme to pre- serve private 

information while doing the collaborative association rules mining. We display that our schema is secure and 

collusion-resistant for n parties, which means that even if n - 1 dishonest party collude with a dishonest data miner 

in an attempt to learn the associations’ rules between honest respondents and their responses, they will be unable to 

success. 
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1. Introduction  

Association rules mining techniques are generally 

applied to databases of transactions where each transaction 

consists of a set of items. In such a framework the problem 

is to discover all associations and correlations among data 

items where the presence of one set of items in a 

transaction implies (with a certain degree of confidence) 

the presence of other items. Association rules are 

statements of the form X1,X2, ...,Xn ⇒ Y , meaning that if 

we find all of X1,X2, ...,Xn in the transactions, then we 

have a good chance of finding Y . The probability of 

finding Y for us to accept this rule is called the confidence 

of the rule. We normally would search only for rules that 

had confidence above a certain threshold. The problem is 

usually decomposed into two sub-problems. One is to find 

those itemsets whose occurrences exceed a predefined 

threshold in the database; those itemsets are called frequent 

or large itemsets. The second problem is to generate 

association rules from those large itemsets with the 

constraints of minimal confidence. Much data mining starts 

with the assumption that we only care about sets of items 

with high support, they appear together in many 

transactions. We then find association rules only involving 

a high-support set of items. That is to say that X1,X2, ...,Xn 

⇒ Y must appear in at least a certain percent of the 

transactions, called the support threshold. How to do the 

global support threshold counting with respecting clients’ 

privacy is a major problem in privacy-preserving rules  

mining. supportX⇒Y = |TX∪Y | / |DB| means that the 

support is equal to the percentage of all transactions which 

contain both X and Y in the whole dataset. And then we can 

get that: confidentX⇒Y = supportX⇒Y / support. The 

problem of mining association rules is to find all rules 

whose support and confidence are higher than certain user 

specified minimum support and confidence. Distributed 

mining can be applied to many applications which have 

their data sources located at different places. In this paper, 

we assume that there are n parties possess their private 

databases respectively. They want to get the common 

benefit for doing association rules analysis in the joint 

databases. For the privacy concerns, they need a private 

preserving system to execute the joint association rules 

mining. The concern is solely that values associated with 
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an individual entity not being revealed. 

1.1. Related Work 

The research of privacy-preserving techniques for data 

mining began in Year 2000, R. Agrawal et al [12] proposed 

a reconstruction procedure which is possible to accurately 

estimate the distribution of original data values from the 

random noise perturbed data. However, Evfimievski et 

al[13] pointed out that the privacy breach will occur in R. 

Agrrawal’s proposal and proposed a new randomization 

techniques to mine association rules from transactions 

consisting of categorical items where the data has been 

randomized to preserve privacy of individual transactions. 

The method presented in Kantarcioglu et al. [13] is the first 

cryptography-based solutions for private distributed 

association rules mining, it assumes three or more parties, 

and they jointly do the distributed Apriori algorithm with 

the data encrypted. In the recent research papers [15][7][8], 

some privacy-preserving association rules schemes are 

proposed. These papers are similar and developed a secure 

multi-party protocol based on homomorphic encryption. 

1.2. Motivation and Our Contributions 

The related works we mentioned above have three 

problems. The first one is low efficiency by using the 

Apriori algorithm. As we know, the Apriori algorithm is not 

so efficient because of its candidates generation scan. The 

second one is the accuracy problem in [13] in which there 

is a trade-off between the accuracy and security. The third 

one is the security problem; the schemes proposed in the 

related works are not collusion-resistant. We propose an 

improved scheme to overcome these three problems.  

• We apply frequent-pattern tree (FP-tree) structure 

proposed in [2] to execute the association rules 

mining and extend it to distributed association rules 

mining framework. We use FP-tree to compress a 

large database into a compact FP-tree structure to 

avoid costly database scans. 

• We present a privacy-preserving protocol which 

can overcoming the accuracy problem causes 

randomization-based techniques and improve the 

efficiency compared to those cryptography-based 

scheme [15][7][9]. 

• Our privacy-preserving protocol provides a perfect 

security and collusion resistant property. Our 

scheme uses the attribute-based encryption to 

create the global FP-tree for each party and then 

uses the homomorphism encryption to merger the 

FP-tree to get the final result of the global 

association rules. 

2. Preliminaries 

2.1. Problem Definition 

We assume that there are n parties want to do 

cooperation on the joint databases DB1 ∪ DB2 ∪ ... ∪ DBn 

without revealing the private information of database. And 

we assume the standard synchronous model of computation 

in which n parties communicate by sending messages via 

point-to-point channels. There are some distributed parties 

who want to get the global result from their data 

transactions over the internet. Every party Pi has their 

private transaction T 1 i . They all have serious concern 

about their privacy while they want to get the accurate 

result to help their following decision. No Party should be 

able to learn contents of a transaction of any other client. 

And we want to use some cryptographic toolkits to 

construct a secure multi-party computation protocol to 

perform this task. Let I = {a1, a2, ..., am} be a set of items, 

and a transaction database DB = _T1, T2, ..., Tn_, where 

Ti(i ∈ [1...n]) is a transaction which contains a set of items 

in I. The support (or occurrence frequency) of a pattern A, 

where A is a set of items, is the number of transactions 

containing A in DB. A pattern A is frequent if A’s support is 

no less than a predefined minimum support threshold 

MinSupp.  

2.2. Cryptographic Primitives 

Public Key Encryption with Homomorphic Property: In 

modern terms, a public-key encryption scheme on a 

message space M consists of three algorithms (K,E,D): 

1. The key generation algorithm K(1k) outputs a random 

pair of private/public keys (sk, pk), relatively to a security 

parameter k. 

2. The encryption algorithm Epk(m; r) outputs a cipher 

text c corresponding to the plaintext m ∈ M, using random 

value r. 

3. The decryption algorithm Dsk(c) outputs the plaintext 

m associated to the cipher text c. We will occasionally omit 

the random coins and write Epk(m) in place of Epk(m; r). 

Note that the decryption algorithm is deterministic. 

In this paper we use Palliler encrytion as public key 

encryption. Paillier homomorphic encryption proposed by 

Pallier [11]. It is provably secure and one-way based on the 

Decisional Composite Residuosity Assumption and the 

Computational Composite Residuosity Assumption: If the 

public key is the modulus m and the base g, then the 

encryption of a message x is E(x) = gxrm mod m2. 

Then it has the homomorphic property E(x1) · E(x2) = 

(gx1rm1 )(gx2rm2 ) =gx1+x2 (r1r2)m = E(x1 + x2 mod 

m) · and + denote modular multiplication and addition, 

respectively. 

Attributes-based Encryption (ABE) The ABE scheme is 

developed from Identity based encryption(IBE) which 

introduced by Shamir [12], is a variant of encryption which 

allows users to use any string as their public key (for 

example, an email address). This means that the sender can 

send messages knowing only the recipient’s identity (or 

email address), thus eliminating the need for a separate 

infrastructure to distribute public keys. In their scheme, 

there is one authority giving out secret keys for all of the 
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attributes. Each encryptor then specifies a list of attributes 

such that any user with at least d of those attributes will be 

able to decrypt. They show that the scheme they present is 

secure. 

2.3. Security Definition and Adversary Model 

This paper considers both semi-honest and malicious 

adversaries. For Semi-honest adversaries, every party are 

assumed to act according to their prescribed actions in the 

protocol. The security definition is straightforward, 

particularly as in our case where only one party learns an 

output. The definition ensures that the party does not get 

more or different information than the output of the 

function. This is formalized by considering an ideal 

implementation where a trusted third party (TTP) gets the 

inputs of the two parties and outputs the defined function. 

We require that in the real implementation of the protocol 

that is, one without a TTP the client C does not learn 

different information than in the ideal implementation. We 

say that π privately computes a function f if there exist 

probabilistic, polynomial-time algorithms SA and SB such 

that: 

{(SA(a, fA(x)), fB(x))} ≡ {(V IEWπA(x),OUPUTπB(x))   (1) 

{(fA(x), SB(b, fB(x)))} ≡ {(OUPUTπA(x), V IEWπB(x))}  (2) 

where ≡ denotes computational indistinguishability, which 

means that there is no probabilistic polynomial algorithm 

used by an adversary A can distinguish the probability 

distribution over two random string. It means that no 

matter how the adversary tries to derive the private 

information from the computation, what he can get only his 

inputs and the random values. 

3. Secure Multi-party Protocol for 

Association Rules Mining Based on 

FP-tree 

3.1. Problem in Apriori-Based Distributed Association 

Rules Mining 

Most distributed association rules mining algorithms are 

adaptations of existing sequential (serial) algorithms. 

Generally speaking two strategies for distributing data for 

parallel computation can be identified: 

1. Data distribution: The data is apportioned amongst the 

processes, typically by”horizontally” segmenting the 

dataset into sets of records. Each process then mines its 

allocated segment (exchanging information on-route as 

necessary). 

2. Task distribution: Each process has access to the 

entire dataset but is responsible for some subset of the set 

of candidate itemsets.  

The Apriori heuristic achieves good performance gained 

by (possibly significantly) reducing the size of candidate 

sets. However, in situations with a large number of 

frequent patterns, long patterns, or quite low minimum 

support thresholds, an Apriori-like algorithm may suffer 

from the following two nontrivial costs: 

– It is costly to handle a huge number of candidate sets. 

For example, if there are 10 power 4 frequent 1-itemsets, 

the Apriori algorithm will need to generate more than 

10power 7 length-2 candidates and accumulate and test 

their occurrence frequencies. Moreover, to discover a 

frequent pattern of size 100, such as {a1... a100}, it must 

generate 2100 −2 ≈ 1030 candidates in total. This is the 

inherent cost of candidate generation, no matter what 

implementation technique is applied.  

– It is tedious to repeatedly scan the database and check 

a large set of candidates by pattern matching, which is 

especially true for mining long patterns. 

3.2. The General Description of Our Proposal 

Our protocol construction is based on secure multi-party 

computation techniques. The history of the multi-party 

computation problem is extensive since it was introduced 

by Yao [14] and extended by Goldreich, Micali, and 

Wigderson [7]. Secure multi-party computation (MPC) 

protocols allow a set of n players to securely compute any 

agreed function on their private inputs, where the following 

properties must be satisfied: privacy, meaning that the 

corrupted players do not learn any information about the 

other players’ inputs. and correctness, meaning that the 

protocol outputs the correct function value, even when the 

malicious players treat. In Secure Multi-party Computation, 

we always assume that semi-honest model exists. 

1. Support count among the common k-item sets 

privately using the homomorphic encryption scheme. 

2. Using attribute-based encryption scheme, every party 

executes FP-tree construction and prepares for the global 

FP-tree construction. 

3. Using the private matching scheme, every party 

merges the conditional FP trees to get common frequent 

itemsets. 

4. Secure global support count computation in the 

merged FP-trees. 

5. Output the final result of association rules from the 

merged global FP-trees. 

Initialization: A multiparty ABE system with 

homomorphic property is composed of K attribute 

authorities and one central authority. Each attribute 

authority is also assigned a value dk. The system uses the 

following algorithms: Setup: A randomized algorithm 

which must be run by some trusted party (e.g. central 

authority). Takes k as input the security parameter. Outputs 

a public key, secret key pair for each of the attribute 

authorities, and also outputs a system public key and 

master secret key which will be used by the central 

authority.  

(1) Attribute Key Generation: A randomized algorithm 

run by an attribute authority. Takes as input the authority’s 

secret key, the authority’s value dk, a user’s GID, and a set 
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of attributes in the authority’s domain AkC. (We will 

assume that the user’s claim of these attributes has been 

verified before this algorithm is run). Output secret key for 

the user. 

(2) Central Key Generation: A randomized algorithm 

runs by the central authority. Takes as input the master 

secret key and a user’s GID and outputs secret key for the 

user. 

(3) Encryption: A randomized algorithm runs by a sender. 

Takes as input a set of attributes for each authority, a 

message, and the system public key. Outputs the cipher text.  

(4) Decryption: -A deterministic algorithm runs by a user. 

Takes as input a cipher- text, which was encrypted under 

attribute set AC and decryption keys for an attribute set Au. 

Outputs a message m if |AkC ∩ Aku| > dk for all authorities 

k. 

3.3. Distributed Association Mining with FP-Tree 

FP-growth is a divide-and-conquer methodology 

proposed by [8] which decomposes the association rules 

mining tasks into smaller ones. It only scans the database 

twice and does not generate candidate itemsets. The 

algorithm substantially reduces the search costs. At first, 

we let the parties build a global FP-tree together and then 

do the association rules mining on the global FP-tree. FP-

growth, for mining the complete set of frequent patterns by 

pattern fragment growth. Efficiency of mining is achieved 

with three techniques: (1) a large database is compressed 

into a condensed, smaller data structure, FP-tree which 

avoids costly, repeated database scans, (2) our FP-tree-

based mining adopts a pattern-fragment growth method to 

avoid the costly generation of a large number of candidate 

sets, and (3) a partitioning-based, divide-and-conquer 

method is used to decompose the mining task into a set of 

smaller tasks for mining confined patterns in conditional 

databases, which dramatically reduces the search space. 

1. Since only the frequent items will play a role in the 

frequent-pattern mining, it is necessary to perform one scan 

of transaction database DB to identify the set of frequent 

items (with frequency count obtained as a by-product). 

2. If the set of frequent items of each transaction can be 

stored in some compact structure, it may be possible to 

avoid repeatedly scanning the original transaction database. 

3. If multiple transactions share a set of frequent items, it 

may be possible to merge the shared sets with the number 

of occurrences registered as count.  

It is easy to check whether two sets are identical if the 

frequent items in all of the transactions are listed according 

to a fixed order. Given a transaction database DB and a 

minimum support threshold MinSupp, the problem of 

finding the complete set of frequent patterns is called the 

frequent-pattern mining problem. With the above 

observations, one may construct a frequent-pattern tree as 

follows. First, a scan of DB derives a list of frequent items, 

{(f: 4), (c : 4), (a : 3), (b : 3), (m : 3), (p : 3)_}(the number 

after ”:” indicates the support), in which items are ordered 

in frequency descending order. Second, the root of a tree is 

created and labelled with”null”. The FP-tree is constructed 

as follows by scanning the transaction database DB the 

second time. 

1. The scan of the first transaction leads to the 

construction of the first branch of the tree: _(f : 1), (c : 1), 

(a : 1), (m : 1), (p : 1)_. Notice that the frequent items in 

the transaction are listed according to the order in the list of 

frequent items. 

2. For the second transaction, since its (ordered) frequent 

item list _f, c, a, b,m_ shares a common prefix _f, c, a_ 

with the existing path _f, c, a,m, p_, the count of each node 

along the prefix is incremented by 1, and one new node (b : 

1) is created and linked as a child of (a : 2) and another 

new node (m : 1) is created and linked as the child of (b : 1). 

3. For the third transaction, since its frequent item list _f, 

b_ shares only the node _f_ with the f-prefix subtree, f’s s 

count is incremented by 1, and a new node (b : 1) is created 

and linked as a child of (f : 3). 

4. The scan of the fourth transaction leads to the 

construction of the second branch of the tree, {(c : 1), (b : 

1), (p : 1)} 

5. For the last transaction, since its frequent item list _c, 

a, m, p_ is identical to the first one, the path is shared with 

the count of each node along the path incremented by 1. 

A frequent-pattern tree (or FP-tree in short) is a tree 

structure defined below: 

1. It consists of one root labeled as ”null”, a set of item-

prefix sub-trees as the children of the root, and a frequent-

item-header table. 

2. Each node in the item-prefix sub-tree consists of three 

fields: item-name, count, and node-link, where item-name 

registers which item this node represents, count registers 

the number of transactions represented by the portion of 

the path reaching this node, and node-link links to the next 

node in the FP-tree carrying the same item-name, or null if 

there is none. 

3. Each entry in the frequent-item-header table consists 

of two fields, (1) itemname and (2) head of node-link (a 

pointer pointing to the first node in the FP-tree carrying the 

item-name). 

Based on this definition, we have the following FP-tree 

construction algorithm. This property is directly from the 

FP-tree construction process, and it facilitates the access of 

all the frequent-pattern information related to ai by 

traversing the FP-tree once following ai’s node-links. We 

can generate the conditional pattern-bases and the 

conditional FP-trees generated from the existing FP-tree. 

Construction of a new FP-tree from a conditional pattern-

base obtained during the mining of an FP- ree, the items in 

the frequent itemset should be ordered in the frequency 

descending order of node occurrence of each item instead 

of its support (which represents item occurrence). This is 

because each node in an FP-tree may represent many 

occurrences of an item but such a node represents a single 

unit (i.e., the itemset whose elements always occur together) 

in the construction of an item- associated FP-tree. We can 
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develop a distributed frequent-pattern mining algorithm 

with distributed FP-trees. When one party has received the 

tree string from another party, he generates new string by 

merging the received string and its own string.  

4. The Details of Multi-party Mining 

Scheme 

In our ABE scheme, we assume that the universe of 

attributes can be partitioned into K disjoint sets. Each will 

be monitored by a different authority. As mentioned above, 

we also have one trusted central authority who does not 

monitor any attributes. 

4.1. Verifiable Secret Sharing 

Secret-sharing schemes are used to divide a secret 

among a number of parties. The information given to a 

party is called the share (of the secret) for that party. It 

realizes some access structure that defines the sets of 

parties who should be able to reconstruct the secret by 

using their shares First, let’s consider a very simplified 

scheme based on the Feldman Verifiable Secret Sharing 

scheme. Recall that, given d points p(1), ..., p(d) on a d − 1 

degree polynomial, we can use Lagrange interpolation to 

compute p(i) for any i. However, given only d−1 points, 

any other points are information theoretically hidden. 

According to the Lagrange formula, p(i) can be computed 

as a linear combination of d known points. Let ∆j (i) be the 

coefficient of p(j) in the computation of p(i). Then p(i) = 

_j∈S p(j)∆j (i) where S is a set of any d known points and 

∆j(i) = pi*k∈S,jnot equal k(i − k)/(j − k). Note that any set 

of d random numbers defines a valid polynomial, and given 

these numbers we can find any other point on that 

polynomial. 

4.2. Specifying Transaction’s Attributes 

If we take this approach, any user with any d attributes 

which are specified will be able to decrypt. But we want 

each encryptor to be able to give a specific subset of 

attributes such that at least d are necessary for decryption. 

In order to do this, we need an extra tool: bilinear maps, for 

bilinear map e, g ∈ G1, and a, b ∈ Zq, e(ga, gb) = e(g, g)ab. 

Now, suppose instead of giving each user gp(i) for each 

attribute i, we choose a random value ti and give gp(i)/ti . If 

the user knew gti for at least d of these attributes, he could 

compute e(g, g)p(i) for each i and then interpolate to find 

the secret e(g, g)p(0). Then if our encryption includes e(g, 

g)p(0)m, the user would be able to find m. Thus, the 

encryptor can specify which attributes are relevant by 

providing gti for each attribute i in the desired transaction 

set. 

4.3. Multiple Encryptions 

First, let’s consider a very simplified scheme based on 

the Feldman Verifiable Secret Sharing scheme. Recall that, 

given d points p(1), ..., p(d) on a d − 1 degree polynomial, 

we can use Lagrange interpolation to compute p(i) for any i. 

However, given only d−1 points, any other points are 

information theoretically hidden. According to the 

Lagrange formula, p(i) can be computed as a linear 

combination of d known points. Let ∆j(i) be the coefficient 

of p(j) in the computation of p(i). Then p(i) = _j∈S p(j)∆j(i) 

where S is a set of any d known points and ∆j(i) = pi*k∈S,j 

not =k(i − k)/(j − k). Note that any set of d random 

numbers defines a valid polynomial, and given these 

numbers we can find any other point on that polynomial. 

Thus our first attempt Multi-Authority Scheme is as 

follows: 

 

4.4. Private FP-Tree Matching 

Here, we apply the secure matching protocol proposed 

by Freedman et al. [16] to merge the FP-tree between every 

two parties. We propose a framework whereby all parties 

participate to a secure aggregation mechanism without 

having access to the protected data. In order to ensure end 

to end confidentiality, the framework uses additive 

homomorphic encryption algorithms. All the count of the 

conditional FP-tree is merged in this step. 

Preventing Collusion. Note that we can easily extend 

this to prevent collusion: If we give all our users points 

from the same polynomial, any group with at least d 

transaction between them would be able to combine their 

keys to find p(0). However, if we instead give each user u a 

different polynomial pu (but still with the same zero point 

pu(0) = p(0)), then one user’s points will give no 

information on the polynomial held by the other (as long as 

neither has more than d.1 points). To see this, note that, 

given any d−1 points on polynomial p1 and any d−1 points 

on polynomial p2, with the requirement that these 

polynomials must intersect at 0, it is still the case that any 

value for y = p1(0) = p2(0) will define a valid pair of 

polynomials. Thus, y is information theoretically hidden. 

Ideally, a public-key encryption scheme should be 

semantically secure against adaptive chosen-cipher text 
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attack. Informally, this means that an adversary can learn 

nothing about the plaintext corresponding to a given cipher 

text c, even when the adversary is allowed to obtain the 

plaintext corresponding to cipher texts of its choice. We 

henceforth denote this security notion as IND-CCA 

(indistinguishability against adaptive chosen-cipher text 

attacks). That is to say that our scheme’s security, which is 

under the semi-honest model, relies on the encryption’s 

strength. 

 

5. Conclusions 

The main contribution of this paper is proposing a 

general framework for privacy preserving association rules 

mining. For that the randomization methodologies are not 

good enough to attain the high accuracy and protect clients’ 

information from privacy breach and the malicious attack, 

we show that how association rules mining can be done in 

this framework and prove that is secure enough to keep the 

clients’ privacy. We also show that our protocols works 

with less communication complexity and communication 

complexity compared to other related schemes. In the 

future research, a common framework with more formal 

and reliable for privacy preservation will enable next 

generation data mining technology to make substantial 

advances in alleviating privacy concerns. 
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