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Abstract: Community structure is one of important characteristics in complex networks and contributes to the understanding 

of function in corresponding complex systems. Many methods based on modularity optimization have been proposed in the past 

few years. To obtain a good community partition, they must maximize the modularity from scratch, which have low efficiency. In 

this paper, we suggest a novel method which first constructs a small network according to connection strength index and then 

uses Blondel method to detect communities. Experimental results on real and synthetic networks show that compared with the 

traditional method our method can not only maintain the quality of communities but also improve the efficiency greatly. 
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1. Introduction 

Complex network, in its simple form, is a set of nodes 

joined in pairs by edges. Many complex systems can be 

represented by networks [1-4]. Examples include Internet [5], 

in which the nodes are computers and the edges are data 

connections such as optical-fibre cables, co-authorship 

networks [6], in which the nodes are authors and the edges are 

co-authorships between authors, and social networks [7], in 

which the nodes are people and the edges represent social 

interactions. Community structure [8-11] is an important 

characteristic of network whose nodes are more tightly 

connected with each other than with other nodes in the 

network. In a social network, a community might correspond 

to an actual community in real world, a group of people 

brought together by common interest, common location or 

workplace, or family ties [12]. 

In the past few years, many methods based on modularity 

optimization are suggested to detect communities in complex 

network. Guimera et al. [13] showed that finding the 

modularity of a network is analogous to finding the 

ground-state energy of a spin system. The method combines 

two types of “moves”: local moves, where a single node is 

shifted from one cluster to another, taken at random; global 

moves, consisting of mergers and splits of communities. Duch 

et al. [14] proposed a method to find the community structure 

in complex networks based on an extremal optimization of 

the value of modularity. The method outperforms the optimal 

modularity found by the existing algorithms in the literature 

giving a better understanding of the community structure. 

Newman et al. [15] described a new algorithm which gave 

excellent results when tested on both computer-generated and 

real-world networks. However, the time complexity of this 

algorithm is (( ) )O m n n+ , or 2( )O n  on a sparse network. 

Clauset et al. [16] presented a hierarchical agglomeration 

algorithm for detecting community structure which is faster 

than many competing algorithms. Its running time on a 

network with n nodes and m edges is ( log )O md n  where d is 

the depth of the dendrogram describing the community 

structure. Medus et al. [17] presented an analysis of 

community structure in networks based on the application of 

simulated annealing techniques. They compared their method 

with other methodologies based on betweenness analysis and 

showed that in all cases a better community structure can be 

attained. Chen et al. [18] suggested an overlapping community 

detection algorithm which first finds an initial partial 

community from a node with maximal node strength and then 
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adds tight nodes to expand the partial community. Guo et al. 

[19] presented a novel method to detect the communities in 

un-weighted, weighted, un-directed, directed and signed 

networks by constructing a dissimilarity distance matrix of 

network and identifying community centers with maximizing 

modularity. Dinh et al. [20] introduced an adaptive framework 

with approximation guarantees for quickly identifying 

community structure in complex networks via maximizing 

modularity Q. Their framework explores the advantages of 

power-law distribution property found in many real-world 

complex systems. Chen et al. [21] proposed a fast and efficient 

algorithm for detecting community structures in complex 

networks. The key strategy of the algorithm is to mine a node 

with the closest relations with the community and assign it to 

this community. Agarwal et al. [22] showed that the technique 

of rounding solutions to fractional mathematical programs 

yields high-quality modularity maximizing communities, 

while also providing a useful upper bound on the best possible 

modularity. The drawback of their algorithm is their resource 

requirement. Due to 3( )O n  constraints in the linear program, 

and 2( )O n  variables in the quadratic program, the algorithm 

currently does not scale beyond about 300 and 4000 nodes 

respectively. However, all these algorithms have a drawback: 

they must maximize the modularity from scratch, which have 

low efficiency. 

In this paper, we suggest a novel method which first 

constructs a small network according to connection strength 

index and then detects communities on the small network. 

Experimental results on real and synthetic networks show that 

by constructing a small network, our method can not only 

maintain the quality of communities but also improve 

efficiency. 

2. Method 

Let G=(V,E) be an undirected network with node set 

V={v1,…,vn}. 
uve E∈  indicates a connection between the 

nodes u and v. The neighborhood of a node u V∈  is the set 

( ) { | }uvN u v V e E= ∈ ∈ . The notation wuv represents the weight of 

an edge euv. For an unweighted network, the weight wuv of any 

edge euv is equal to 1. 

2.1. Blondel Method 

The Blondel method [23] is a fast community detection 

method which is composed of two steps. Initially, each node in 

network is considered as a community. Then, for each node u, 

one considers the neighbor v of u and computes the gain of 

modularity 
uvQ∆

 
by putting u into the community which 

contains node v temporarily. The node u is then placed in the 

community of its neighbor that yields the largest gain of 

modularity, as long as it is positive. The 
uvQ∆  is computed by 

( )( ) ( ), ,

22

u C v C u uu v u u

uv

G G

k k k kk k
Q

w w

− +−
∆ = −       (1) 

where ku,v is the sum of weights of the edges from u to nodes in 

community Cv, ku,u is the sum of weights of the edges from u 

to nodes in community Cu, ku is the sum of the weights of the 

edges incident to node u, kC(u) is the sum of the weights of the 

edges inside community Cu, kC(v) is the sum of the weights of 

the edges inside community Cv and wG is the sum of the 

weights of all the edges in the network. The first step is 

iterated until all nodes can’t move. In the second step, each 

community is considered as a super node, and the weight of 

the edge between two super nodes are given by the sum of the 

weights of the edges between two corresponding communities 

at the lower level. The two steps are repeated until there is no 

more improvement and maximal modularity is achieved. The 

computational time grows like O(m), where m is the number 

of edges in network, so the algorithm is extremely fast. 

2.2. Connection Strength Index 

For an undirected and unweighted network, the connection 

strength of two connected nodes u and v is defined as 

( ) ( )
( , )

( ) ( ) 2 ( ) ( )

N u N v
cs u v

N u N v N u N v

∩
=

+ − ∩
      (2) 

where two sets N(u) and N(v) are the neighbors of two nodes u 

and v respectively. If two nodes u and v have the same 

neighbors, the value cs(u,v) is ∞. A very small constant is 

added in the denominator to avoid cs(u,v) being ∞. If two 

nodes u and v has no common neighbors, the cs(u,v) is equal to 

0. So the larger the value cs(u,v) is, the stronger the connection 

of two connected nodes u and v is. 

In Eq.(2), most of time is consumed in the computation of 

( ) ( )N u N v∩ . To compute the value ( ) ( )N u N v∩  in ( )1O  

time, the counting sort method [24] is used. Assume that there 

is an auxiliary array C with n elements, all initialized to 0. We 

first make one pass through the set N(v) and for each node

( )p N v∈  that we see, we increment C[p] by 1. Then we 

sweep each node ( )q N u∈  and count the number of C[q]=1, 

i.e., the value ( ) ( )N u N v∩ . 

2.3. Compressing and Partitioning 

Given an undirected and unweighted network G(V,E), we 

can obtain an initial community division by taking advantage 

of connection strength index and then construct a small 

network based on these initial communities. The Blondel 

method is used to detect final communities on this small 

network. The details are described as follows: 

(i) Compute the connection strength for all pairs of 

connected nodes by Eq.(2). 

(ii) First, all edges are removed from network G(V,E). Then, 

given a node u, if ( )v N u∀ ∈ , ( , ) 0cs u v = , do nothing; if 

( )v N u∃ ∈ , ( , ) 0cs u v > , an edge is added between node u and 

the neighbor v with the largest ( , )cs u v .  

(iii) If a node has no edges, it is still a single node in the 

small network. If two or more nodes are connected, they are 

considered as a node in the small network. In the small 

network, all nodes are called ‘super node’ which contains one 

or more nodes. Two super nodes are connected if there is at 
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least an edge between them in the original network. The 

weight of a new edge is the number of the edges between two 

super nodes in original network. 

(iv) The Blondel method is used to detect communities on 

the small network. 

 

Figure 1. The community detection process of our method. (a) A toy network 

with two communities; (b) the initial community partition according to 

connection strength index; (c) the construction of a small network; (d) the 

final communities. 

We use a toy network with two communities to illustrate our 

method, as shown in Figure 1. First, all edges in Figure 1(a) 

are removed. Then for node 5, because of cs(5,6)=0 and 

cs(5,7)=0, it has no edges and is still a single node in the small 

network. For node 6, the cs(6,1) is the largest among its three 

neighbors, so the edge e16 is added between two nodes 1 and 6. 

Similarly, the edge between two nodes 1 and 2 is added. Three 

nodes 1, 2 and 6 are constructed as a super node in the small 

network because they are connected. The node 1 is chosen as 

the super node id. Other nodes are processed in a similar way 

and the results are shown in Figure 1(b)-(d). 

2.4. Computational Complexity 

Our method is composed of three parts: the computation of 

each edge’s connection strength, the construction of a small 

network and the community detection. For the computation of 

one edge’s connection strength, the time complexity is O(1), 

so m edges take O(m) time. For the construction of a small 

network, the breadth-first search (BFS) [24] is used to find 

initial communities, so the part takes O(n) time. Because of 

using the Blondel method, the time complexity of community 

detection is O(m’), where m’ is the number of edges in small 

network. Since m’<<m and n<m in real networks, the 

computational complexity of our algorithm is O(m). 

3. Experimental Results 

To evaluate the performance of our method (labeled as 

CBlondel), we compare it with the traditional strategy (labeled 

as Blondel), i.e., the communities are detected from scratch by 

using the Blondel method. Two methods have been compiled 

and tested on the laptop with a core i7-4702 MQ and 8 GB 

memory. In the implementation, two methods share the same 

the Blondel method. The only difference is that our method 

constructs a small network before using the Blondel method. 

3.1. Real Networks 

Gowalla [25] contains user-user friendship relations. Nodes 

represent users and an edge indicates a friendship between two 

users. Dblp [26] is a co-authorship network of DBLP 

computer science bibliography. Nodes are authors and an edge 

between two nodes exists if the corresponding authors have 

published at least one paper together. Youtube [27] is a social 

network from a video-sharing web site. Users form 

friendships with each other and users can create groups in 

which other users can join. In the network, nodes represent 

users and an edge between two nodes indicates a friendship. 

Stanford [28] is the hyperlink network of the websites of the 

universities in Berkley and Stanford. Nodes represent web 

pages and edges represent hyperlinks. The detailed 

information of four real networks is listed in Table 1. 

Table 1. The topological properties of four real networks, including the 

number of nodes, the number of edges, average degree (<k>), mean squared 

degree (<k2>), global clustering coefficient (cc), power law exponent (α ). 

network #nodes #edges <k> <k2> cc α 

Gowalla 196591 950327 9.67 2964.03 0.024 2.65 

Dblp 317080 1049866 6.62 144.01 0.306 3.26 

Stanford 654782 6581871 20.10 65804.78 0.009 2.60 

Youtube 1134890 2987624 5.26 2603.72 0.006 2.14 

Table 2 shows the experimental results of two methods. 

From Table 2, it can be seen that compared with the traditional 

method our method maintains the quality of communities in 

four real networks. In Blondel method, the modularity 

depends on the sweeping order of nodes. However, the 

sweeping order of nodes does not have a significant influence 

on the modularity. Because of constructing a small network, 

the sweeping order of nodes for our method is different from 

that for the traditional one. So the modularity of our method is 

slightly higher than the traditional one on Gowalla, Dblp and 

Youtube networks, but slightly lower than the traditional one 

on Stanford network. 

Meanwhile, Table 2 shows that the running time of our 

method is faster than that of the traditional one on four real 

networks. For the traditional method, to maximize the 

modularity gain in the first iteration, each edge is computed 

many times. However, for our method, each edge is computed 

only once. So compared with the traditional method, the 

coefficient of time complexity for our method is smaller. To 

quantify the efficiency of our method, an index called 

“speedup ratio” is defined 

traditional our

traditional

T T
speedup ratio

T

−
=           (3) 

where Tour is the CPU running time for our method and 

Ttraditional for the traditional one. On Gowalla and Dblp 

networks, the speedup ratio is less than 45%. However, on 

Youtube and Stanford networks, the speedup is more than 

65%. So the speedup ratio is related with the network 

structure. 
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Table 2. The experimental results on four real networks, including the CPU 

running time(s), modularity (Q) and speedup ratio. 

network 
modularity running time (s) Speedup 

ratio Blondel CBlondel Blondel CBlondel 

Gowalla 0.687 0.697 15.88 9.25 0.42 

Dblp 0.805 0.818 12.76 8.80 0.31 

Stanford 0.937 0.932 311.53 54.44 0.82 

Youtube 0.685 0.707 218.38 72.95 0.66 

3.2. Synthetic Networks 

We also test the performance of our method on some 

synthetic scale-free networks which are generated by LFR 

model [29]. In the LFR model, both the degree and the 

community size distributions are power laws, with exponents 

α and β, respectively. The synthetic scale-free networks are 

built as follows: 

1. Each node is given a degree taken from a power law 

distribution with exponent α. The extremes of the 

distribution kmin and kmax are chosen such that the average 

degree is <k>. The configuration model [30] is used to 

connect the nodes to keep their degree sequence. 

2. Each node shares a fraction 1-µ of its edges with the 

other nodes of its community and a fraction µ with the 

nodes of the other communities: 0 1µ≤ ≤  is the mixing 

parameter. 

3. The sizes of the communities are taken from a power law 

distribution with exponent β, such that the sum of all 

sizes equals the number of nodes of the network. The 

minimal and maximal community sizes smin and smax are 

chosen to respect the constraints imposed by our 

definition of community: smin>kmin and smax>kmax. This 

ensures that a node of any degree can be included in at 

least a community. 

4. At the beginning, all nodes are homeless, i.e., they are 

not assigned to any community. In the first iteration, a 

node is assigned to a randomly chosen community; if the 

community size exceeds the internal degree of the node 

(i.e., the number of its neighbors inside the community), 

the node enters the community, otherwise it remains 

homeless. In successive iterations we place a homeless 

node to a randomly chosen community: if the latter is 

complete, we kick out a randomly selected node of the 

community, which becomes homeless. The procedure 

stops when there are no more homeless nodes. 

5. To enforce the condition on the fraction of internal 

neighbors expressed by the mixing parameter µ, several 

rewiring steps are performed, such that the degrees of all 

nodes stay the same and only the split between internal 

and external degree is affected, when needed. In this way 

the ratio between external and internal degree of each 

node in its community can be set to the desired share µ 

with good approximation. 

First, we generate four synthetic networks with the same 

parameters α and β, which are set to 2.5 and 1.5 respectively. 

The only difference for four synthetic networks is the mixing 

parameters µ, which is set to 0.1, 0.2, 0.3 and 0.4, respectively. 

The smaller the mixing parameter µ is, the stronger the 

community structure is. The detailed information of four 

synthetic networks is described in Table 3. 

Table 3. The topological properties of four synthetic networks with different 

community structure, including the number of nodes, the number of edges, 

average degree (<k>), global clustering coefficient (cc). 

network #nodes #edges kmin <k> α ββββ μμμμ cc 

LFR1 500000 3242458 5 13.0 2.5 1.5 0.1 0.041 

LFR2 500000 3242458 5 13.0 2.5 1.5 0.2 0.030 

LFR3 500000 3242458 5 13.0 2.5 1.5 0.3 0.021 

LFR4 500000 3242458 5 13.0 2.5 1.5 0.4 0.015 

From Table 4, it can be seen that our method not only 

maintains the quality of communities but also improves 

efficiency in all cases compared with the traditional one. For 

0.4µ =  and 0.5µ = , the speedup ratio is more than 10%. For 

0.1µ =  and 0.2µ = , the speedup ratio is more than 35%. 

These results also show that our method has to do with the 

community structure. For strong community structure, the size 

of small network is really small because many connected 

nodes have common neighbors. However, for weak 

community structure, the size of small network is still large 

because many connected nodes have no common neighbors. 

From above analysis, our method is suitable for the networks 

with strong community structure. 

Table 4. The experimental results on four synthetic networks with different 

community structure, including the CPU running time(s), modularity (Q) and 

speedup ratio. 

network 
modularity running time (s) Speedup 

ratio Blondel CBlondel Blondel CBlondel 

LFR1 0.846 0.846 48.50 29.77 0.39 

LFR2 0.770 0.769 57.01 35.12 0.38 

LFR3 0.670 0.670 56.33 46.65 0.17 

LFR4 0.575 0.580 49.92 44.88 0.10 

Second, we generate four synthetic scale-free networks 

with different number of communities. As shown in Table 5, 

all the parameters of four synthetic networks are the same. In 

order to generate different number of communities, the 

number of nodes for four synthetic networks is different. 

From Table 6, it can be seen that with the increase of the 

number of communities, the speedup ratio has only small 

changes. So the number of communities has little influence 

on speedup ratio. 

Table 5. The topological properties of four synthetic networks with different 

number of communities, including the number of nodes, the number of edges, 

average degree (<k>), the number of communities (nc). 

network #nodes #edges kmin <k> α ββββ μμμμ nc 

LFRC1 300000 1944393 5 13.0 2.5 1.5 0.1 456 

LFRC2 350000 2267290 5 13.0 2.5 1.5 0.1 528 

LFRC3 500000 3238714 5 13.0 2.5 1.5 0.1 733 

LFRC4 550000 3563300 5 13.0 2.5 1.5 0.1 843 
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Table 6. The experimental results on four synthetic networks with different 

number of communities, including the CPU running time(s), modularity (Q) 

and speedup ratio. 

network 
modularity running time (s) Speedup 

ratio Blondel CBlondel Blondel CBlondel 

LFRC1 0.844 0.844 28.58 18.79 0.34 

LFRC2 0.845 0.846 29.78 20.22 0.32 

LFRC3 0.847 0.846 47.63 32.75 0.31 

LFRC4 0.846 0.846 47.51 34.15 0.28 

Finally, we generate four synthetic networks with different 

parameters α and β. In LFR model, two parameters α and β 

take typical values: 2 3α≤ ≤ , 1 2β≤ ≤ . To evaluate the 

impact of two parameters on our method, we generate two 

groups of synthetic networks: (1) when parameter α is set to 

2.5, the parameter β is set to 1.2 and 1.8 respectively; (2) when 

parameter β is set to 1.5, the parameter α is set to 2.2 and 2.8 

respectively. The detailed information of four synthetic 

networks is described in Table 7. 

Table 7. The topological properties of four synthetic networks with different 

exponent parameters, including the number of nodes, the number of edges, 

average degree (<k>), global clustering coefficient (cc). 

network #nodes #edges kmin <k> α ββββ μμμμ cc 

LFRP1 500000 3257667 6 13.0 2.5 1.2 0.1 0.101 

LFRP2 500000 3257321 6 13.0 2.5 1.8 0.1 0.118 

LFRP3 500000 3262103 6 13.0 2.2 1.5 0.1 0.118 

LFRP4 500000 3240603 6 13.0 2.8 1.5 0.1 0.063 

The experimental result is shown in Table. 8. When 

parameter 2.5α = , the speedup ratio is 30% for 1.2β =  
and 

32% for 1.8β = . So the parameter β has little impact on the 

speedup ratio. The reason is that different β only leads to 

different number of communities. When parameter 1.5β = , 

the speedup ratio is 33% for 2.2α =  and 22% for 2.8α = . So 

the parameter α is related to the speedup ratio. The reason can 

be explained as follows. The larger the parameter α is, the 

more the small degree of nodes is. However, for large α, to 

generate a network with designated average degree <k>, the 

LFR model must generate many nodes with larger degree 

which lead to small global clustering coefficient (cc). From 

Table 7, it can be seen that the cc is 0.118 for 2.2α = and 

0.063 for 2.8α = . For our method, the small cc will results in 

large size of small network because many connected nodes 

have less common neighbors. So our method is suitable for the 

network with small parameter α. 

Table 8. The experimental results on four synthetic networks with different 

exponent parameters, including the CPU running time(s), modularity (Q) and 

speedup ratio. 

network 
modularity running time (s) Speedup 

ratio Blondel CBlondel Blondel CBlondel 

LFRP1 0.857 0.857 42.17 29.44 0.30 

LFRP2 0.848 0.848 44.47 30.18 0.32 

LFRP3 0.866 0.866 46.10 30.84 0.33 

LFRP4 0.845 0.845 43.19 33.44 0.22 

4. Conclusion 

In this paper, we suggest a novel method which first 

constructs a small network according to connection strength 

index and detects communities on the small network by 

using Blondel method. According to connection strength 

index, a node may have no edge or at least one edge. If a node 

has no edge, it is still a node in the small network. If many 

nodes are connected, they are considered as a node in the 

small network. 

The performance of our method is evaluated on real and 

synthetic networks. First, on four real networks, our method 

maintains the quality of communities compared with the 

traditional one. Meanwhile, our method is always faster than 

the traditional one. Second, on four synthetic networks with 

different community structure, experimental results show that 

our method is suitable for the networks with strong 

community structure. Third, on four synthetic networks with 

different number of communities, experimental results show 

that the number of communities has little influence on our 

method. Finally, on four synthetic networks with different 

parameters α and β, experimental results show that our method 

is suitable for the network with small parameter α. 
There are two open issues needing further study in the 

future. First, apart from community structure, the number of 

communities and exponent parameters, there are many other 

network characteristics which have an influence on the speed 

ratio. Much work is needed to find them in the future. Second, 

with the available of temporal data in recent years, the 

community detection in temporal networks has caused great 

concern [31]. So the further research on the community 

detection in temporal networks is needed. 
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